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Abstract We discuss the field equations of Brans-Dicke theory for a plane symmetric inflationary 

cosmological model in the presence of thick domain wall. We assume that the expansion scalar () is 

proportional to the shear scalar () and also the power law ansatz for scalar field (). The physical and 

geometrical behaviour of the resulting model is discussed through different parameters. 
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1  Introduction 

The Brans-Dicke (BD) theory of gravity [1] has been extensively studied by many 

researchers for the last five decades in different physical contexts.This theory is consisting 

of a massless scalar field  and a dimensionless constant  describing the strength of the 

coupling between  and the matter [1]. In this theory the gravity is mediated by a scalar 

field  in addition to the usual metric tenson gij present in Einstein's general theory of 

relativity. According to Mach's principle the long range scalar field  is generated by the 

whole matter in the universe and has the dimension of the inverse of the gravitational 

constant G [2]. The work of Singh and Rai [3] gives a detailed Survey of Brans-Dicke 

cosmological models discussed by several authors. A revised model of the inflationary 

universe under the framework of Brans-dicke theory is investigated by Mathiazhagan and 

Johri [4]. Singh and Singh [5] have investigated a cosmological model in Brans-dicke 

theory by considering cosmological constant as a function of scalar field . Obregon and 

Pimental [6] presented exact cosmological models with particle creation taking BD scalar 

field  as a linear function of time. Berman [7] considered special law of variation of 

Hubble's parameter in involutionary models with perfect fluid as material source, which 

leads to a constant value of deceleration parameter. Ready et al. [8] studied an axially 

symmetric Bianchi type-I Cosmological model with negative constant deceleration 

parameter with the help of special law of variation of Hubble's parameter proposed by 

Berman [7]. Johari and Desikan [9] studied Brans-dicke cosmological models with constant 

deceleration parameter in the presence of creation of matter particles. Zeyauddin and Ram 

[10] presented two categories of exact solutions of the field equations of Brans-dicke theory 
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for a spatially homogeneous and anisotropic Bianchi type-V cosmological models by 

applying the law of variation of Hubble's parameter. Venkateswarlu and Satish [11] have 

investigated LRS bianchi type-I inflationary string cosmological model in BD theory of 

gravitation. Singh and Bishi [12] presented a bulk viscous cosmological model in Brans-

dicke theory with new form of time varying deceleration parameter. Ozer and Delice [13] 

studied gravitational waves in Brans- Dicke theory with a cosmological constant. Recently, 

Bamba et al. [14] have studied gravitational decoupling of anisotropic stars in the Brans-

Dicke theory. 

     There are many open questions in theoretical and experimental cosmologies, which are 

still under consideration by cosmologists and need to be answered. One of the challenging 

problem in cosmology is the domain wall problem. Domains walls are formed when the 

universe undergoes a series of phase transitions with discrete symmetry being 

spontaneously broken (Vilenkin [15,16]). After the symmetry breaking different regions of 

the universe can be settling into different parts of the Vacuum with domain walls forming 

boundaries between their regions. The light domain walls of large thickness may have 

produced during the late time phase transitions such as those occurring after the  decoupling 

of the matter and radiations (Hill et al. [17],  Reddy [18]). A lot of work has been done on 

thick domain walls in Lyra geometry by Rahamann [19, 20]. Reddy and Rao [21] studied 

axially symmetric domain walls in Lyra geometry. Pawar et al. [22] studied bulk viscous 

fluid plane symmetric string dust magnetized cosmological model in general relativity. 

Katore et al. [23] have studied domain wall cosmological models with deceleration 

parameter in modified theory of gravitation. Katore and Hatkar [24] investigated Bianchi 

type III and Kantowski-Sachs domain wall cosmological models in f (R,T) theory of 

gravitation. Recently, Rao et al. [25] have studied dynamics of cosmological model with 

domain walls and massive scalar fields in f (R, T) gravity. 

      Motivated by the above observations, we consider plane symmetric inflationary 

cosmological model in Brans-Dicke theory of gravitation in the presence of thick domain 

wall. The outline of the paper is as follows: The model and the field equations are presented 

in Section 2. In Section 3, we deal with an exact solution of the field equations with thick 

domain wall. In Section 4, we describe some physical and geometrical properties of the 

model. The conclusions of the study are given in section 5. 

 

2   Model and Field Equations 

We consider the plane symmetric space-time of the form 
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,)( 2222222 dzBdydxAdtds               (1) 

where A and B are functions of t only. 

Brans-Dicke [1] field equations for combined scalar and tensor fields are 
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Here Gij is the Einstein tensor, Tij is the energy momentum tensor of the matter, Rij is the 

Ricci tensor,  is the Brans-Dicke scalar field and  is the dimensionless coupling constant. 

Also comma (,) and semi-colon (;) denote partial and covariant differentiation, respectively. 

     The stress-energy components in comoving co-ordinates for the domain wall under 

consideration here are given by 
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where   is the energy density of the wall, which is again equal to the tension along x and y 

directions in the plane of the wall and p is the pressure along z direction.  

      The field equations (2) and (3) for the metric (1), in view of equation (5) are given as  
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where a dot (.) denotes differentiation with respect to time t. 

       We define the average scale factor a, the volume scalar V and the generalized mean 

Hubble's parameter H  for the space-time (1) as 
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3  are the directional Hubble's parameters in the directions 

of x, y and z  respectively. 

From equations (10) and (12), we obtain 
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The Kinematical quantities such as the expansion scalar , the shear scalar  and the 

anisotropy parameter Am  are defined as 

,
2











B

B

A

A 
             (14) 

,
3

1












B

B

A

A 
             (15) 

.
3

1
23

1








 
 

 H

HH
A i

i

m
           (16) 

The deceleration parameter q in a cosmological model is defined as 
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3   Solution of the Field Equations 

The field equations (6) - (9) are a system of four equations with five unknown parameters A, 

B, p,  and . Therefore, we need more relations to find the determinate solution of the 

system. So any one quantity may be chosen independently to solve the system of equations. 

Since the field equations contain A and B and their derivatives, so without any loss of 

generality, we shall assume that the BD scalar field  is some power of the average scale 

factor a. Thus, following Johri and Desikan [9], we assume a power-law relation between 

the average scale factor a and the scalar field   of the form 
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, ba             (18) 

where  is any integer and b is the constant of proportionality. 

      For a spatially homogeneous metric, the normal congruence to homogeneous expansion 

implies that  / = n, where n is a constant. This condition leads to 
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which yields to 
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where ).321(/)31( nnm   The above equation, after integration, reduces to 
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where l  is an integrating constant. 

From equations (10), (18) and (21), we get 
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where 3/2 bl .  From equations (6) and (8), we obtain  
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Using equations (21) and (22) in equation (23), we get 
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which on integration gives 
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where c1 and c2 are constants of integration and 
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Using equation (25) in equation (21), we obtain 
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Hence the metric (1) reduces to the form 
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4   Geometrical and Physical significance 

The scalar field   in the model is given by 
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We observe that the scalar field  is time-dependent and is an increasing function of cosmic 

time. Therefore, during the evolution of universe the scalar field is growing and affects the 

behaviour of physical parameters in the model. 

     The spatial volume V of the model is given by 
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The directional scale factors A, B and the spatial volume V are increasing function of time t. 

Initially, when 
12 / cct  , the scale factors A, B and volume V  attain zero value and 

finally, when ,t  they attain infinite values. This shows that the model starts evolving 

with zero volume and attain infinite volume at final stage. The model has a point type 

singularity at t = –  c2/c1. 

     The directional Hubble's parameters Hi (i = 1, 2, 3) and the generalized mean Hubble's 

parameter H are given by 
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From the above equations, we observe that H1, H2, H3 and H are decreasing functions of 

time t. Hence our model is not a steady-state model.  

     The deceleration parameter (q) of the model is obtained as 
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We note that q < 0, q = 0 and q > 0, respectively indicate the phases of accelerated 

expansion, uniform expansion and decelerated expansion of the universe. Here the 
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deceleration parameter q is found to be negative provided k < 2(m-1)/3. Hence the present 

model represents an accelerating phase of the expanding universe. Recent observations like 

SNe Ia [26] and CMB anisotropy [27] confirmed that the present universe is accelerating 

and the value of deceleration parameter q lies somewhere in the range  –1  q  0. 

    The expansion scalar , shear scalar σ and the anisotropy parameter Am  take the form 
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We observe that expansion scalar  and shear scalar  are decreasing function of time 

which have infinite value at t = – c2/c1,  but tend to zero in late-time evolution. The 

anisotropy parameter is constant, which shows that the nature of the model is always 

anisotropic throughout the evolution. Also 
 



t
lim  const., which shows that the shear 

scalar does not tend to zero faster than the expansion scalar and hence the model has 

anisotropic behaviour. 

     The energy density   and the pressure p for the model are given by 
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where   is given by equation (29).      

From the above equations, it is observed that energy density  and pressure p are decreasing 

functions of time. Initially, when t = –  c2/c1, both  and p are infinitely large and tend to 

zero as t  . The presence of the BD scalar field  in the expressions of the physical 

parameters  and p is playing the important role and affect the behaviour of these 

parameters. Since the scalar field  is an increasing function of time t and hence its presence 

slows down the rate of decrease of energy density  and pressure p at late time-evolution of 

the universe. 
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5   Conclusion 

In this paper, we have presented plane symmetric inflationary cosmological model with 

thick domain wall in Brans-Dicke theory of gravitation. It is observed that at the initial 

epoch t = – c2/c1, the physical quantities for the model (28) like  expansion scalar ( ), shear 

scalar (), Hubble parameter (H ), energy density () and pressure (p) diverge. Thus our 

model starts with big-bang at t = – c2/c1 and goes on expanding until it comes out to rest at t 

= ∞. The initial singularity in the model is the point type. We observe that 



 is constant, 

the model does not approach isotropy at any time. Our model is in accelerating phase which 

is consistent to the recent observations. It is also observed that the scalar field  is playing 

an important role in slowing down the rate of decrease of  energy density  and pressure p 

in the model at late-time evolution. We have found a new solution for inflation that deserves 

attention. 
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